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ABSTRACT
Many shape optimization problems of industrial interest can be converted in mathematical finite-dimensional
optimizations through discretization and parametrization. Hence a good knowledge of global and local
optimization algorithms is important to design engineers. This part of the lecture series describes the most
classical local optimization methods. All of these algorithms - except the simplex - require the gradient of the
functions of interest with respect to the design parameters. The different ways to compute those derivatives -
often called “sensitivities” - are also described.

1 Introduction

Numerical optimization aims at locating the minima of a regular function (called objective function) on a
finite-dimensional design space, while satisfying a certain number of constraints (expressed as inequality
verified by the so-called constraint functions). More precisely, local optimization aims at finding a local
optimum in the neighborhood of an initial guess, whereas global optimization aims at finding the global
optimum on the whole design space. These problems are, of course, the mathematical counterparts of me-
chanical optimization problems - like drag minimization of an aicraft or total pressure maximization of a
supersonic aircraft air intake - as soon as (a) a mesh and a simulation tool are available ; (b) the solid shape
has been parametrized/a remeshing tool is available to propagate its deformation to the whole mesh ; (c) the
objective and constraints have been expressed as functions of the geometry and state variables.
Numerical optimization for airplane design was used almost as soon as simulation codes appeared. The aero-
dynamic optimizations carried out by G.N. Van der Plaats at NASA in the mid 70’s illustrate this early inter-
est in optimization [1]. At that time, 2D and simple 3D configurations were considered, simplex or descent
methods were used and the gradients required by descent methods were estimated by the finite-differences.
Since then, the framework of aerospace optimization has known at least three drastic extensions:
(1) several global optimization methods have been defined and intensively used (evolutionary algorithm, par-
ticle swarm, ant colony, simulated annealing,...) ;
(2) surrogate functions (neural network, Kriging, polynomial regression, support vector machine,...) have
been used for a part of the evaluation of the global optimization methods leading to significant cost reduc-
tions ;
(3) adjoint vector and direct differentiation method have been defined , studied and more and more often
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used to computate the gradients necessary for descent algorithms.

This part of the course focuses on local optimization methods. Section 1 and 2 gather general informa-
tions, basic definitions and theorems. Section 3 is dedicated to the broadly used simplex method. Section 4 is
devoted to descent methods. Section 5 describes the adjoint and direct methods that can efficiently compute
the gradient of the functions of interest with respect to the design parameters.

Section 3 and 4 are joint work with M. Marcelet (ONERA). Section 5 is joint work with R.P. Dwight
(TU-Delft).

2 Notations, mathematical problem and properties

2.1 Mathematical optimization problem

In this first subsection, the classical notations of a mathematical finite-dimensional optimization problem are
defined. Let α be the current vector of the input space (design vector). Let us denote nf its dimension. The
vector α is supposed to vary in Dα (the design space), a parallelepiped of Rnf .
The objective function to minimize on Dα is denoted J (α). The constraints of the problem are supposed
to be formulated through nc functions Gj , j ∈ [1, nc], that are negative at admissible design points. Only
inequality constraint are considered here as for most practical design problems an adequate choice of the
design parameters allows to avoid equality constraints.
Obviously the local and global optimization problems read

• Global optimum search

Seek for α∗ in Dα such that J (α∗) = Min J (α) on Dα

∀j ∈ [1, nc] Gj(α∗) ≤ 0.

• Local optimum search

Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗

(Vα∗ neighborhood of α∗)
∀j ∈ [1, nc] Gj(α∗) ≤ 0.

In most common situations, the objective and constraint functions are at least continuous. In this course, the
functions are supposed to have C1 regularity, and in some sections, C2 regularity.

2.2 Optimization problem stemming from a numerical simulation

In the framework of aircraft or turbomachinery design, the functions of interest depend on a distributed
state field and geometrical variables that are linked by a system of equations discretizing physical partial
differential equations on a computational domain. It is rather difficult to write a general presentation fitting
all disciplines. For this reason this subsection is "aerodynamics-oriented".
Let us note S(α), the coordinates of the surface mesh of a solid body. This function is supposed to be C1
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regular. From any surface mesh S(α) a volumic mesh X(α) is built. This function is also supposed to have
C1 regularity. Its Jacobian dX/dα can always be estimated by finite-differences and in some cases by the
following product of Jacobians

dX

dα
=

dX

dS

dS

dα

The state variables (aerodynamic conservative variables at the center of the cells, for example, for a CFD
simulation) are noted W (vector of size na). State variables and mesh satisfy the discrete equations of fluid
mechanics (a discrete form of (RaNS) equations for example),

R(W,X) = 0

(in general, nonlinear set of na equations). These equations of mechanics are also supposed to have C1

regularity with respect to (w.r.t.) its two vector arguments. For a specific mesh Xi = X(αi), the equations
for mechanics define a set of na nonlinear equations and na unknowns (the components of W ). Let us now
consider the state variable Wi associated with mesh Xi

1. More precisely, we shall suppose that

R(Wi, Xi) = 0 det[(∂R/∂W )(Wi, Xi)] 6= 0

The implicit funtion theorem allows us to define W as a C1 function of X in a neighborhood of Xi, and
then, thanks to the regularity of X(α), as a C1 function of α in a neighborhood of αi. For the remainig part
of this subsection this property is assumed to be true for the whole design space Dα.
We may now use the notation W (α) (C1 function from Rnf to Rna) and rewrite the discrete state equations

R(W (α), X(α)) = 0

Note that when R(W,X) and X(α) have Ck (k > 1) regularity, the implicit function theorem garantees Ck

regularity for W (α). This property is needed when computing the derivatives of order k of objective and
constraints functions (with most often k=1 or 2).
In case of an optimization problem associated with a framework of numerical simulation, the objective
function may be written

J (α) = J(W (α), X(α))

The constraint functions Gj(α) have the same dependencies Gj(α) = gj(W (α), X(α)). A shape, corre-
sponding to a vector α (size nf ) is said to be admissible if and only if

∀j ∈ [1, nc] gj(W (α), X(α)) ≤ 0.

(nc number of contraint functions).

1in aerodynamics, for certain geometry and boundary conditions the steaty flow may not be unique. Such a troublesome situation
is obviously not compatible with design optimization and is not discussed here.
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• The global optimisation problem now reads

Seek for α∗ in Dα such that

J (α∗) = J(W (α∗), X(α∗)) = Min J (α) sur Dα

∀j ∈ [1, nc] gj(W (α∗), X(α∗)) ≤ 0.

Obviously no optimization algorithm can pretend to systematically find one global optimum without
more hypothesis, in particular convexity, than C1 regularity of J and gj (which has been adopted to allow
derivatives computations).

• The local optimisation problem is also rewritten

Seek for α∗ in Dα such that

J (α∗) = J(W (α∗), X(α∗)) = Min J (α) sur Vα∗

(Vα∗ being a neighborhood of α∗)
∀j ∈ [1, nc] gj(W (α∗), X(α∗)) ≤ 0.

2.3 The Karush-Kuhn-Tucker condition

For the unconstrained optimization of a C2 function of Rnf , classical conditions of existence for minima
read :
- local optimum located in α∗ - ∇J (α∗) = 0 is a necessary condition. ∇J (α∗) = 0 and H(α∗) positive
definite (H hessian matrix of J ) is a sufficient condition.
- global optimum located in α∗ - ∇J (α∗) = 0 is a necessary condition. ∇J (α∗) = 0 and H(α) positive
definite on Rnf is a sufficient condition.
For a constrained problem on a finite size domain, the necessary condition for optimality is more complex to
express. Actually, we first have to introduce more explicit notations for the parallelepiped design space Dα:

Dα = [α1,l, α1,u]× [α2,l, α2,u]× [α3,l, α3,u]× ...× [αnf ,l, αnf ,u]

Then the domain bounds are rewritten as 2nf additionnal constraints:
Gnc+1(α) = α1,l − α1

Gnc+2(α) = α1 − α1,u

Gnc+3(α) = α2,l − α2

...
Gnc+2nf

(α) = αnf
− αnf ,u

For an optimization problem with inequality constraints the Karush-Kuhn-Tucker conditions are:
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KKT conditions

α∗is an admissible state
∇J (α∗) + Σλ∗j∇Gj(α∗) = 0
λ∗jGj(α∗) = 0 λ∗j ≥ 0.

The third line means that only the constraints attaining the limit value zero may have their gradient in-
cluded in the linear combination of the second line.

By introducing a lagrangian L(α, λ1, · · · , λnc) = J (α) + ΣλjGj(α), we can write KKT conditions:

KKT conditions (alternative formulation)

α∗is an admissible state
∇αL(α∗, λ∗1, · · · , λ∗n′

c
) = 0

λ∗jGj(α∗) = 0 λ∗j ≥ 0.

The Karush-Kuhn-Tucker condition is a necessary condition for optimality. This condition is the coun-
terpart for constrained problems of the necessary condition ∇J = 0 for unconstrained problems. It is a
sufficient condition only when objective and constraint functions are convex.

As this condition is not very intuitive, it is suggested that the reader draws some sketches for nf = 2
with a minimum reached inside Dα

- with one inequality constraint attaining its bound G1(α) = 0. Drawing iso-lines of J and G1 helps under-
standing the theorem ;
- with two inequality constraints attaining their bound G1(α) = 0, G2(α) = 0. Drawing iso-lines of the three
functions of the problem also helps understanding the theorem.

2.4 Solving KKT conditions for elementary problems in R2

In this section, three examples of solution of KKT optimality conditions are given. To improve readability,
we set α = α1 and β = α2.

2.4.1 With one linear inequality constraint

The following problem is considered:{
Min α2 + 3β2

subject to g1(α, β) = 7− 2α− 3β ≤ 0

The corresponding Lagrangian function is:

L(α, β, λ) = α2 + 3β2 + λ(7− 2α− 3β)
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The KKT conditions are:
∂L
∂α (α∗, β∗, λ∗1) = 2α∗ − 2λ∗1 = 0
∂L
∂β (α∗, β∗, λ∗1) = 6β∗ − 3λ∗1 = 0
g1(α∗, β∗) ≤ 0 λ∗1 ≥ 0 λ∗1g1(α∗, β∗) = 0

/ First case: constraint g1 is active. Following system has to be solved:

2α∗ − 2λ∗1 = 0
6β∗ − 3λ∗1 = 0

7− 2α∗ − 3β∗ = 0

The first two equations yield α∗ = 2β∗ = λ∗1. With the third, we obtain (α∗, β∗, λ∗1) = (2, 1, 2)

/ Second case: constraint g1 is not active. Following system has to be solved:

2α∗ = 0
6β∗ = 0
λ∗1 = 0

But the solution (0, 0, 0) gives g1(α∗, β∗) = 7 > 0, in contradiction with the hypothesis.

/ Conclusion. The KKT conditions give the following unique solution : (α∗, β∗) = (2, 1) and λ∗1 = 2.

Figure 1: Solution of problem 1
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2.4.2 With one nonlinear inequality constraint

The following problem is considered:{
Min α2 + 3β2

subject to g2(α, β) = 1− α + β2 ≤ 0

The solution of the KKT conditions yield (α∗, β∗) = (1, 0) and λ∗2 = 2:

∇J(1, 0) + λ∇g2(1, 0) = 0 ⇔
[
2
0

]
+ λ

[
−1
0

]
= 0

⇔
[
2
0

]
= λ

[
1
0

]

Figure 2: Solution of problem 2

2.4.3 With two inequality constraints

The following problem is considered: Min α2 + 3β2

subject to g2(α, β) = 1− α + β2 ≤ 0
and g3(α, β) = 4− α− 2β ≤ 0
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The corresponding Lagrangian function is:

L(α, β, λ2, λ3) = α2 + 3β2 + λ2(1− α + β2) + λ3(4− α− 2β)

The KKT conditions are:
∂L
∂α (α∗, β∗, λ∗2, λ

∗
3) = 2α∗ − λ∗2 − λ∗3 = 0

∂L
∂β (α∗, β∗, λ2, λ3) = 6β∗ + 2λ∗2β

∗ − 2λ∗3 = 0
g2(α∗, β∗) ≤ 0 λ2 ≥ 0 λ2g2(α∗, β∗) = 0
g3(α∗, β∗) ≤ 0 λ3 ≥ 0 λ3g3(α∗, β∗) = 0

/ First case: the two constraints are active. The following system of equations has to be solved:

2α∗ − λ∗2 − λ∗3 = 0
2β∗(3 + λ∗2)− 2λ∗3 = 0

4− α∗ − 2β∗ = 0
1− α∗ + (β∗)2 = 0

The last two equations are equivalent to (β∗)2 + 2β∗ − 3 = 0 and α∗ = 1 + (β∗)2. The solutions for β
of the first equation are -3 and +1.

1. β∗ = −3 gives α∗ = 10. Solving for the 2x2 linear system (λ∗2, λ
∗
3) leads to a negative λ∗2;

2. β∗ = 1 gives α∗ = 2. Solving for the 2x2 linear system (λ∗2, λ
∗
3) yields (λ∗2, λ

∗
3) = (1

2 , 7
2)

/ Second case : only constraint g3 is active. The following system of equations is to be solved:

2α∗ − λ∗3 = 0
6β∗ − 2λ∗3 = 0

4− α∗ − 2β∗ = 0
λ∗2 = 0

The first two equations give 2α∗ = 3β∗ = λ∗3. With the third equation, we obtain (α∗, β∗, λ∗3) = (12
7 , 8

7 , 24
7 ).

At this point, the constraint g2 is violated (g2(12
7 , 8

7) = 29
49 > 0).

/ Third case: only constraint g2 is active. The following system of equations needs to be solved:

2α∗ − λ∗2 = 0
2β∗(3 + λ∗2) = 0

λ∗3 = 0
1− α∗ + (β∗)2 = 0

In the second equation, we retain only the option β∗ = 0. So we obtain (α∗, β∗, λ∗2) = (1, 0, 2). At this
point, the constraint g3 is violated (g3(1, 0) = 3 > 0).
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/ Fourth case: Constraints g2 and g3 are inactive. The following system of equations needs to be solved:

2α∗ = 0
6β∗ = 0
λ∗2 = 0
λ∗3 = 0

But the solution (α, β, λ∗2, λ
∗
3) = (0, 0, 0, 0) leads to g3(α∗, β∗) = 4 > 0 and g2(α∗, β∗) = 1 > 0.

/ Conclusion. The unique minimun of our problem is reached at (2, 1), as it can be checked on the
graphics below. Let us also note that λ∗2 = 7

2 and λ∗3 = 1
2 are the coefficients of the linear combination of the

gradient of the objective function and the (active) constraints that satisfies the first KKT condition∇αL = 0.
This is illustrated by figure 3.

Figure 3: Solution of problem 3

3 Simplex method

This method is both deterministic and simple (as it uses only values of the function of interest). It was
introduced in 1965 by Nelder et Mead [2] and appeared to be efficient, robust and easy to code. Actually,
its robustness allows in some circumstances to subtitute approximate values of the function of interest to the
exact ones. The simplex algorithm was the starting point for the definition of many derived algorithms called
“pattern search methods”.
It is supposed here that the whole search path is located in an admissible region or that no constraint appears
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in the minimization problem. In opposition to classical descent methods, the initialisation procedure requires
the evaluation of the function of interest for a set of nf + 1 points (the vertices of a simplex of Rnf ). Most
often this set is built around a specific point α1, the nf other points being defined by following relationship 2 :

αi+1 = α1 + λie
i i = 1, ..., nf

where vectors ei, (i = 1, ..., nf ) define a basis of Rnf The scalar factors λi, (i = 1, ..., nf ) are constants.
Most often they are all equal to a single value. The set of nf + 1 points can be called either polytop or
simplex and is denoted P =< α1, α2, ..., αnf+1 >. The minimization algorithm proceeds as follows :

1. Sort the points so that :
J (α1) ≤ J (α2) ≤ ... ≤ J (αnf+1)

2. The center of gravity of the (α1, α2, ..., αnf ) (all points of simplex P but the worst) is considered and
denoted α

3. A new point (αr) is defined by reflection of the worst point of the polytop w.r.t the center of gravity

αr = (1 + a)α− aαnf+1

(coefficient a > 0 is called the reflection coefficient of the method)

(a) If J (αr) < J (α1), αr if a very interesting point for the purpose of minimization. A trial is
made to go further in the direction of αr. Following point is defined

αe = bαr + (1− b)α

where b > 0 is called the expansion coefficient of the polytop. If J(αe) < J(αr) then αe is
selected to replace αnf+1. The algorithm goes back to step 1. Otherwise αr is finaly selected to
replace αnf+1 ; The algorithm goes back to step 1.

(b) If J (α1) ≤ J(αr) < J(αnf ) then αr is accepted to replace αnf+1 ; The algorithm goes back to
step 1.

(c) If J (αn) ≤ J (αr) < J (αnf+1) then the algorithm tries an internal contraction by evaluating
the point

αc = cα + (1− c)αr

where c is the contraction coefficient. If J (αc) < J (αr) then αc is kept to replace αnf+1 ;
Execution goes back to step 1. Otherwise αr is finaly accepted to replace αnf+1 ; Algorithm
goes back to step 1.

(d) If J (αnf+1) ≤ J (αr) then αr is a very bad point for the purpose of the minimization. The
algorithm tries an internal contraction of the polytop

αc = cα + (1− c)αnf+1

If J (αc) < J (αnf+1) then αc is selected to replace αnf+1 ; Algorithm goes back to step
1. Otherwise the whole simplex is shrinked. All points of the polytop but the best αi, i =

2caution : do not mix the lower index of vector components in α = (α1, α2, ..., αnf ) with the upper index of design vector
number
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2, ..., nf + 1 are replaced by
αi = dαi + (1− d)α1

where d is the shrinking coefficient of the algorithm.

The algorithm is stopped when the displacement of polytop becomes small enough, that is

1
n

nf∑
i=1

||αk+1
i − αk

i ||2 < ε

(i index of points in the sorting of step (1), k index of iterations) Standard values for reflection (a), expansion
(b), contraction (c) and shrinking coefficients(d) are :

(a, b, c, d) = (1, 2, 1/2, 1/2)

The location of the candidate new points is illustrated in figure 4 for nf = 3.

α1
α4

α

α1
α4

α

(a) original simplex (b) reflection

α1
α4

α

α1
α4

α

(c) expansion (d) contraction

α1
α4

(e) shrinking

Figure 4: simplex – search of new points
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4 Descent methods

The graphics in this section are adapted from those of the classical book of G.N. Vanderplaats “Numerical
optimization techniques for engineering design: with applications.” [3] or from http://www.mathworks.com.

A descent method is an iterative method for the solution of a local optimization problem. Starting from
an initial point, it attempts to converge to an optimum, using local information at the current point to compute
the next iterate.

In the following pages, we first present the most popular algorithm for 1D minimization. Then, we focus
on some unconstrained optimization methods before presenting constrained optimisation methods.

4.1 Function of one variable

In many algorithms of multi-dimensionnal optimization, after a descent direction dk has been defined, a one
dimensional minimization along dk is performed. This means that a step t is sought to diminish significantly
q(t) = J (αk + tdk). A good line-search is obviously desirable, but the number of exact evaluations of J
must remain as low as possible : the goal is not to find the optimal t > 0 at an intermediate step but to
reduce is the objective function J efficiently at each iteration. Conversely a bad line-search can slow down
the global algorithm and a compromise must be found between the performance of the line-search and the
number of evaluations of J .
This minimization along a descent direction during multi-dimensionnal optimization is one of the reasons
for the interest in 1D-minimization.

4.1.1 Academic methods

Methods of order 0 Methods of order 0 can be used to find the minimum of a function of one variable in
case function values only can be computed.

Algorithm 1 Methods of order 0
Set tL = a, tR = b and k = 1;
while convergence level not reached do

Choose search point t−k and t+k ;
Compute q(t−k ) and q(t+k );
if q(t−k ) ≤ q(t+k ) then

tR = t+k
else

tL = t−k
end if
k = k + 1

end while

Various strategies to choose the search point have been developed:

• if the original interval is divided in three equal parts, it can be shown that the convergence is linear

with a rate of
√

2
3 ;
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• if the golden number (λ = 1+
√

5
2 ) is used (t−k = λ

1+λ tL + 1
1+λ tR and t+k = 1

1+λ tL + λ
1+λ tR). One of

the two points of step k, is also a search point of step k + 1. The convergence rate is then 1
λ .

Dichotomy In some cases, the considered function is smooth and the derivative of q(t) is known. It can
then be used to improve the descent rate.

Algorithm 2 Dichotomy

Set tL = a, tR = b,k = 1 and stop=false;
while not stop do

Choose search point tk as tk = tL+tR
2 ;

Compute q′(tk);
if q′(t−k ) = 0 then

stop=true;
else

if q′(t−k ) > 0 then
tR = tk

else
tL = tk

end if
k = k + 1

end if
end while

It can be shown that this method converges linearly with a rate of 0.5. There are many other methods of
academic interest to find the minimum of function of one variable ; all of them use a large number of eval-
uations of q(t) (possibly q′(t)). For industrial applications, a satisfactory method is based on a compromise
between the accuracy of the computed solution and the required number of evaluations of q(t) (each of them,
of course, requiring an evaluation of J ).

4.1.2 Wolfe line-search

From this point of view, in case the derivative of q(t) is available, one of the most efficient methods is the
Wolfe line-search, based on the following rules (where 0 < m1 < m2 < 1):

• a step is too large if q(t) > q(0) + m1tq
′(0);

• a step is too small if q′(t) < m2q
′(0);

• else the step is satisfactory.

This rules are illustrated on the figure 5.
Based on these rules, the algorithm is given hereafter.
In many applications, obtaining derivatives q′(t) of q(t) is computationally expensive. One adapted

method of Wolfe linear search, called the Goldstein and Price method, replaces q′(t) by the average slope
q(t)−q(0)

t . It is described in the next subsection.

Local Search Methods for Design in Aeronautics 
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t

q’(0)

m2q’(0)

q(t)

0

m2q’(0)

m2q’(0) m1q’(0)

Too largeToo small Satisfactory step Too small Satisfactory step

Figure 5: Wolfe’s rules

Algorithm 3 Wolfe line-search
Set tL = 0, tR = +∞ and stop=false; Choose an initial stepsize t and value for parameters m1 and m2

with 0 < m1 < m2 < 1 and β > 1;
while not stop do

if q(t) > q(0) + m1tq
′(0) or q′(t) < m2q

′(0) then
if q(t) > q(0) + m1tq

′(0) then
tR = t (current step is too large)

end if
if q′(t) < m2q

′(0) then
tL = t (current step is too small)

end if
if tR is real then

t = tL+tR
2

else
t = βtL

end if
else

stop=true (current step is satisfactory)
end if

end while

4.1.3 Goldstein and Price method

By substituting q′(t) by q(t)−q(0)
t , condition which defines too small step becomes :

q(t)− q(0) < m2tq
′(0)

The definition of too small and too large steps becomes :

• a step is too large if q(t) > q(0) + m1tq
′(0);

Local Search Methods for Design in Aeronautics  
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• a step is too small if q(t) < q(0) + m2tq
′(0);

• else the step is satisfactory.

It is equivalent to say that a step is satisfactory if the average slope is bounded by m1q
′(0) and m2q

′(0).
Even with these modifications, Wolfe line-search requires a large number of objective funtion evalua-

tions. In most industrial cases, it is replaced by a parabolic-approximation approach.

4.1.4 Polynomial approximations

Polynomial approximations is one of the most effective techniques for finding the minimum of a function
of one variable. The method has the advantage of requiring only a few function evaluations at each step.
Conversely, it can lead to a very poor approximation for highly nonlinear functions. The approximation with
a polynomial of degree 2 is presented:

q̃(t) = a0 + a1t + a2t
2

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  0.2  0.4  0.6  0.8  1

exp(-x) + 0.3*exp(x)
Polynomial approximation

Computed solution
Exact solution

Figure 6: Polynomial approximations

The evaluation of the function q and its first derivative q′ at t0 = 0 leads to the following system
(a0, a1) = (q(t0), q′(t0)). Evaluation of the function q in an another point t1 is needed to compute the
coefficient a2:

a0 + a1t1 + a2t
2
1 = q(t1) ⇔ q(t0) + q′(t0)t1 + a2t

2
1 = q(t1)

⇔ a2 =
q(t1)− a0 − a1t1

t21

After the polynomial coefficients are found, the location of the minimum of the polynomial is identified,
which is simple and inexpensive. For a polynomial approximation of degree 2, the result is obvious (t∗ =
−a1
2a2

). More information about polynomial approximations can be found in Vanderplaats[3].
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4.1.5 Line-search for constrained optimization

Section 4.3 will describe several algorithms adapted for constrained optimization and requiring a line-search.
In this case, the methods presented in previous sections 4.1.[1-4] must be generalized and applied to function
r(t) = Φ(αk + tdk) instead of q(t) = J (αk + tdk). The function Φ includes a penalty term to account for
non-admissible areas of the design space. The most popular penalty function is the following :

Φ(α) = J (α) +
nc∑
i=1

σig
+
i (α) (1)

g+
i (α) = min(0, gi(α))2 (2)

4.2 Descent methods for unconstrained optimization

In this part, we focus on the search of an optimum of the objective function on the design space Dα. In
this section an the next one, the sequence of points of several algorithms is illustated in 2D for Rosenbrock
banana function :

J (α1, α2) = (α1 − 1)2 + 100(α2 − α2
1)

2

4.2.1 Steepest Descent Methods

The most intuitive method uses, at each iteration, the opposite of the gradient as the descent direction.

Algorithm 4 Steepest Descent algorithm with fixed step

We set k = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −∇J (αk).
Update current iterate: αk+1 = αk + dk.
Set k = k + 1

end while

This method can be improved by finding, at each iteration, one optimal step by resolving 1D optimisation
problem by methods presented above.

Algorithm 5 Steepest Descent algorithm with optimal step

We set k = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −∇J (αk).
Find t∗ by line-search on q(t) = J(αk + tdk).
Update current iterate: αk+1 = αk + t∗dk.
Set k = k + 1

end while

Actually, theses methods are short-sighted and have a zig-zagging behaviour for simple test cases (for
example, with the Rosenbrock banana function, see figure 7). This behaviour affects convergence speed and

Local Search Methods for Design in Aeronautics  

4 - 16 RTO-EN-AVT-167 

 

 



robustness of this method. Conjugate gradient methods is one of the mean developped to circumvent these
difficulties.

Figure 7: Steepest descent path for Rosenbrock banana function

4.2.2 Conjugate Gradient methods

The idea behind Conjugate gradient methods comes from the analysis of the behaviour of the steepest de-
scent for the specific case of positive definite quadratic forms (J (α) = 1

2αT Hα + bT α). In this case,
the conditioning of positive definite matrix H strongly affects the robustness and convergence speed of the
steepest descent. To improve robustness, Conjugate Gradient methods uses at step k a descent direction dk

orthogonal to dk−1 in the sense of H -
(
dk−1

)T
Hdk = 0.

dk = −∇J (αk) + βkdk−1 βk =

(
∇J (αk)

)T
Hdk−1

(dk−1)T
Hdk−1

In this simple case (positive definite matrix H), the search of the unique minimum of J is equivalent to the
resolution of the linear system Hα + b = 0 (search for the unique point where gradient of J is zero) and it
can be proven that the algorithm converges to the unique solution in nf or less steps.

Two formulas have been proposed for computation of βk for extension to non quadratic cases. The first
one is based on an other formula of βk in the quadratic positive definite case βk = ‖∇J (αk)‖2

‖∇J (αk−1)‖2 which can be
directly applied to a non-quadratic function as it does not refer anymore to matrix H . The second extension,
proposed by Polak and Gibière in 1969, reduces also to the same algorithm in the quadratic positive definite
case (see below, as then ∇J (αk)T .∇J (αk−1) = 0). It is known to lead to a more efficient algorithm for
specific applications.

• Fletcher-Reeves
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βk =
‖∇J (αk)‖2

‖∇J (αk−1)‖2

• Polak-Ribiere

βk =
‖∇J (αk)‖2

‖∇J (αk−1)‖2
−
(
∇J (αk)

)T ∇J (αk−1)
‖∇J (αk−1)‖2

Algorithm 6 Conjugate Gradient algorithm

We set k = 0 and d−1 = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −∇J (αk) + βkdk−1.
Find t∗ by line-search on q(t) = J(αk + tdk).
Update current iterate: αk+1 = αk + t∗dk.
Set k = k + 1

end while

Figure 8: Conjugate Gradient path for Rosenbrock banana function

A more efficient algorithm requires more information, in particular information about the second deriva-
tives of the function to minimize. Newton methods have been devised for this reason.
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4.2.3 Newton methods

The classical Newton method is originally a method to find the roots of the equation z(α) = 0 by approxi-
mating the function z by successive linear expansions. Starting from the current iterate αk, substituting z by
its linear approximation leads to :

z(αk + dk) = z(αk) +∇z(αk)dk + o(‖dk‖). (3)

Neglecting the term o(‖dk‖) yields z(αk)+∇z(αk)dk = 0, the solution of which, dk = −
[
∇z(αk)

]−1
z(αk),

allows to calculate the next iterate αk+1 = αk + dk.
The same method can be used as an optimization algorithm, by solving the optimality equation presented

in section 3. In this case, the function z(α) becomes the gradient ∇J of the objective function J and the
gradient ∇z, its Hessian ∇2J . At each iteration k, the descent direction has to be computed by the formula
dk = −

[
∇2J (αk)

]−1∇J (αk).

Algorithm 7 Newton algorithm

We set k = 0; an initial iterate α0 and a stopping tolerance ε are given;
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −∇2J (αk)∇J (αk).
Update current iterate: αk+1 = αk + dk.
Set k = k + 1

end while

The important advantage of this method resides in its convergence in the neighborhood of the solution,
which is superlinear in general and quadratic (at each iteration, the number of exact digits is doubled) if J
has C3 regularity.

Besides, the drawbacks of Newton’s method are also well-known:

• the Hessian is required: in most engineering problems, an explicit form of the objective function
is unavailable. The Hessian must be computed numerically which requires a large number of the
objective function evaluations ;

• in high dimensional spaces, the solution of the linear system at each iteration is very CPU demanding ;

• Newton methods diverge violently far from the optimal point ;

• this algorithm converges on the closest stationary point, not necessarily the global minimum.

Quasi-Newton methods were developed to circumvent these drawbacks.

4.2.4 Principle of Quasi-Newton methods

Considering these drawbacks, the quasi-Newton realizes an improvement over the above Newton method
based on two main ideas:

• First, the stability problems of the method can be avoided by adding a line-search process in the
algorithm. Actually, noting that the requirement J (αk+1) < J (αk) enforces stability, the Newton
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increment dk is considered as a direction, along which a line-search is performed to diminish the
function q(t) = J (αk + tdk). It can be proved that the line-search is possible if and only if the
Hessian of the objective function is positive definite. Line-search algorithms are presented in section
(4.1).

• Secondly, rather than computing the Hessian matrix, its inverse is approximated by a matrix H̄ which
evolves during the iterations. This matrix can be chosen symmetric positive definite. An algorithm
following this approach will be presented in the next section.

Algorithm (8) describes the steps of a generic quasi-Newton algorithm.

Algorithm 8 Generic quasi-Newton algorithm

Set k = 0; an initial iterate α0 and a stopping tolerance ε are given; an initial matrix H̄0, positive definite
(generally the identity matrix) is also chosen.
while ‖∇J (αk)‖ ≥ ε do

Compute dk = −H̄k∇J (αk).
Make a line-search initialized by t = 1.
Update current iterate: αk+1 = αk + tdk.
Compute the new matrix H̄k+1.
Set k = k + 1

end while

Figure 9: quasi-Newton path on Rosenbrock banana function
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4.2.5 BFGS method

Let us now explain how the matrix H̄ evolves during the iterations. The method presented here was intro-
duced by C. Broyden[4], R. Fletcher[5], D. Goldfarb[6] and D. Shanno[7]. It certainly is the most popular
quasi-Newton algorithm. The matrix H̄k+1 is computed from H̄k and some vectors attached to iteration k
and k + 1 computations according to following formulas

sk = αk+1 − αk

yk = ∇J (αk+1)−∇J (αk)

H̄k+1 = H̄k − sk(yk)T H̄k + H̄kyk(sk)T

(yk)T sk
+
[
1 +

(yk)T H̄kyk

(yk)T sk

]
sk(sk)T

(yk)T sk

4.3 Constrained optimization

Multidimensionnal constrained optimization problems are now considered : the optimum is searched in the
admissible sub-domain of the design space. Actually, most complex indutrial problems lead to multidimen-
sionnal constrained optimization.

4.3.1 Sequential linear programming (SLP)

This method solves a sequence of linear problems approximating the posed non-linear one. α0 being an
initial guess of the solution the algorithm reads 3

Algorithm 9 Sequential linear programming

Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do

Find δαk which minimizes J (α) ' J (αk) +∇J (αk).δα;
subject to Gj(α) ' Gj(αk) +∇Gj .δα ≤ 0 j = 1, nc

and αi,l ≤ α + δα ≤ αi,u i = 1, nf

Update αk+1 = αk + δαk

Set k = k + 1
end while

A linear problem has to be solved at each iteration of the algorithm. Its solution may not be an admissible
state for the non-linear problem (i.e. it may violate one of the constraints). It is nevertheless possible to have
non-admissible states as intermediate solution of the algorithm and to converge towards the exact admissible
solution. Another issue of the SLP algorithm is that the solution of the linear problem may not be bounded.
In this case, the norm of δα is bounded by the user. In pratice it appears that the corresponding bound has
to be lowered as the number of iterations increases. Sequential Linear Programming is well-suited for many
optimization problems but its parameter - the bound of δα as a function of the number of iterations - is
critical and has to be carefully defined.

3caution : do not mix the lower index of vector components in α = (α1, α2, ..., αnf ) with the upper index of design vector
number
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Figure 10: Sequential linear programming

4.3.2 The method of centers

As explained in previous sub-section, (SLP) algorithm generates many intermediate inadmissible states αj

(draw a sketch in the case of two convex contraints and two des ign parameters). The methods of centers,
although also based on linear approximations of objective and constraints functions, defines almost only
admissible intermediate states.
Let point α0 be the initial guess for the minimization problem. α1 is then build as the center of the largest
sphere (in Rnf ) included in following subspace of Rnf .{

∇J (α0).(α− α0) ≤ 0.
Gj(α0) +∇Gj .(α− α0) ≤ 0 j = 1, nc

(4)

The reader is invited to draw some figures to check that the sphere is not always tangent to all planes
defined by linearization of the constraints in α0. Hence, just as for (SLP), δα = α1 − α0 has to be bounded.
Let d also denote the first increment d = δα = (α1 − α0). The distances of center α1 to the hyperplanes
defined by differentiation of objective and constraint functions are

D = −∇J (α0).d
|∇J (α0)|

Dj = −Gj(α0) +∇Gj(α0).d
|∇Gj(α0)|

The algorithm has to find the radius of the sphere r and its center α1 - or equivalently -the displacement d
from α0 to α1 solving the linear problem defined by D ≥ r, Dj ≥ r :

 Maximize r, find d
∇J (α0).d + |∇J (α0)|r ≤ 0.
∇Gj(α0).d + |∇Gj .(α0)|r ≤ −Gj(α0) j = 1, nc

(5)

This linear optimisation problem is solved in r and d and an other iteration is done with α∗1 as starting point.
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Algorithm 10 The method of centers

Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do

Find dk which maximizes r;
subject to ∇J (αk).dk + |∇J (αk)|r ≤ 0.
and ∇Gj(αk).dk + |∇Gj .(αk)|r ≤ −Gj(αk) j = 1, nc

Update αk+1 = αk + dk

Set k = k + 1
end while

Several authors proposed to combine this method with a gradient method defining the new position of
the estimated minimum as

α1 = α0 + d + β
∇J (α0)
|∇J (α0)|

where the factor β must be small in order to stay in the linearly admissible region (β = -r/2 for example).

Figure 11: Method of centers

4.3.3 Feasible direction method

In opposition to the two previous methods, this one directly works on the non linear equations of the problem.
Its goal is to build a sequence of points α(p) such that

α(p) = α(p−1) + ld(p)

where the displacement along direction d leads to lower values of both, the objective the active constraints 4.
After d has been defined, the factor l is determined by a monodimensional optimization. Let us now derive
the definition of d. As before, the index are the ones of the first iteration of the algorithm. The vector d must

4all constraints satisfying Gj(α
(p−1)) = 0
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satisfy
∇J (α0).d ≤ 0

∇Gj(α0).d ≤ 0 ∀j/Gj(α0) = 0.

The tricky point is the determination of the vector d ensuring the best descent. For a simple two dimensional
problem (nf = 2) with one active convex constraint G1, it is easy to check on a sketch that the minimisation
∇J(α0).d with ∇G1(α0).d ≤ 0. will lead to a vector d that will lead to a nonadmissible state α1. To tackle
this issue, scalar factors θj are included in the problem

∇Gj(α0).d + θj ≤ 0 θj > 0. ∀j/Gj(α0) = 0.

One wants to link the value of θj with the one of ∇J (α0).d Eventually, the research of he best direction for
descent is reformulated as follows

Maximize β, find d
∇J (α0).d + β ≤ 0.
∇Gj(α0).d + θjβ ≤ 0. ∀j Gj(α0) = 0.
d bounded

(6)

Obviously, if Gj is a linear constraint then θj = 0. For non linear constraints the simplest choice is θj = 1.
More complex formulas are presented in [3].

Algorithm 11 Feasible direction method

Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do

Find dk which maximizes β;
subject to ∇J (αk).dk + β ≤ 0.
∇Gj(αk).dk + θjβ ≤ 0. ∀j/Gj(αk) = 0 and dk bounded.
Compute optimal step t minimizing q(t) = J (αk + tdk)
Update αk+1 = αk + tdk

Set k = k + 1
end while

4.3.4 Sequential quadratic programming (SQP)

In this method, an auxiliary fonction of the descent vector d is indroduced. It is a quadratic approximation
of J (α + d). The algorithm reads{

Minimize Q(d) = J (α) +∇J (α).d + 1
2dT Bd

∇Gj(α).d + δjGj(α) ≤ 0. j = 1, nc
(7)

B is a positive definite matrix equal to the identity matrix I at the first step and to an approximation of
the hessian for the next iterations. Parameter δj is taken equal to 1 if the contraint is strictly respected
(Gj(α) < 0) and to a value in [0,1] if the current design point α violates contraint Gj(α). See [3] for more
information about hessian estimation, and monodimensional search after determination of d.
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Figure 12: Method of feasible direction

Algorithm 12 Sequential quadratic programming

Set k = 0; an initial iterate α0 and a stopping tolerance ε are given; an initial hessian matrix is also chosen;
an initial hessian matrix B0 is also chosen;
while KKT-conditions not satisfied do

Find dk which minimizes Q(d) = J (αk) +∇J (αk).d + 1
2dT Bkd;

subject to ∇Gj(αk).d + δjGj(αk) ≤ 0. j = 1, nc

Update αk+1 = αk + dk

Build Bk+1 from, for example, BFGS formula
Set k = k + 1

end while

5 Sensitivity evaluation for descent methods

Most of this section is extracted from a review article by R.P. Dwight and J. Peter [8] where more details can
be found.

5.1 Introduction

This section will derive in some detail the principle methods of gradient evaluation, firstly finite differences,
followed by discrete and continuous versions of the direct and adjoint methods. We use the convention of
uppercase symbols for discrete, and lowercase for continuous quantities, so that W is the solution of the
discretized governing equations R(W,X) = 0 on the mesh X . The discrete adjoint variable will be denoted
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Λ. The continuous flow and adjoint solutions are w and λ respectively.

Most 3D gradient computations for fluid dynanics use (RaNS) equations with “frozen µt”-assumption. This
asumption leads sometimes to large discrepancy between finite-difference references ans computed gradi-
ents. A warning about that is absolutely necessary in the foreword of this section

5.2 Finite Differences

The application of finite differences to an entire flow solver is by far the simplest means of obtaining solution
gradients, as it requires no modification of the solver itself. As a result it was one of the first sensitivity
evaluation methods to be used.

To proceed, the numerical flow solution corresponding not only to α but also to perturbed states α + δα
and possibly α − δα is calculated. For the typical case of δα representing a geometry modification, this
implies a mesh deformation X(α + δα), and a new flow solution on the modified mesh satisfying

R (W (α + δα), X(α + δα)) = 0.

An approximation of objective functions derivatives in the direction δα can then be computed using a finite
difference formula, such as the second-order accurate formula

dJ (α)
dα

δα ' 1
2

[J (α + δα)− J (α− δα)]

=
1
2

[J(W (α + δα), X(α + δα))− J(W (α− δα), X(α− δα))] .
(8)

The entire matrix dJ (α)/dα may be evaluated at a cost of 2×nf flow solutions, or if a first-order difference
is used nf + 1 flow solutions, making the method impractical for large design spaces.

Another serious disadvantage is that the choice of the step size ‖δα‖ is critical to the accuracy of the
result. If it is too small then rounding errors become significant; particularly if the convergence level of the
steady state computation is low. For example if ε is the machine epsilon (the smallest number that may be
added to 1 giving a number distinct from 1), then

‖δα‖ � ε‖α‖, ‖δα‖ � ε
|J (α)|∣∣∣dJ (α)

dα

∣∣∣ ,
are weak constraints on ‖δα‖. In practice however J is rarely evaluated to machine accuracy, and ‖δα‖must
be increased accordingly. On the other hand too large a value of ‖δα‖ invalidates the neglection of higher
order terms in the Taylor expansion in (8). The choice is case and parameter dependent, and in practice
the only means of guaranteeing accuracy is to perform a convergence study on ‖δα‖ for each parameter, at
considerable cost.
Finite differences have been used since the 70s in the context of shape optimization. Early contributions
include works of Hicks et al. [9] and Vanderplaats et al. [1] for aerofoil design, and later wing design [10],
using the method of feasible directions in which the lift was held constant by moving in the design space
only normal to the lift gradient. Here the flow was modeled with a small perturbation full potential equation
solver. Early contribution also include articles by Reneaux and Thibert [11, 12]. As 3d optimization was
considered with finite difference gradients, the number of design parameters and the cost of computations
became severe problems. In an attempt to reduce the number of parameters needed aerofunction shapes were
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introduced for example by Aidala et al. [13], defined to be aerodynamically meaningful parameterizations
of an aerofoils. These might consist of geometry perturbations that control leading edge pressure, or shock
position [14, 15].

However the fundamental limitations of finite differences have lead to the investigation of alternative
means of gradient evaluation.

5.3 The Discrete Direct Method

Under the assumption that the discrete residual R is once continuously differentiable with respect to the
flow field and mesh in a neighbourhood of W (α) and X(α), the discrete form of the governing equations
R(W,X) = 0 may be differentiated with respect to α to give

∂R

∂W

dW

dα
= − ∂R

∂X

dX

dα
. (9)

This may be regarded as a linear system in unknowns dW/dα, where dX/dα may be evaluated by finite
differences as in the previous section, and the partial derivatives could be evaluated for example by hand.
The dimension of the system is the number of degrees of freedom in the non-linear equations nW , and it can
be regarded as a linearization of those equations. Of course R is seldom differentiable everywhere, but in
practice this rarely causes difficulties [16].

Given the nf solutions dW/dα the derivatives of J are

dJ (α)
dα

=
∂J

∂W

dW

dα
+

∂J

∂X

dX

dα
(10)

where again the partial derivatives are in principle easy to evaluate, as J is a known, explicit function of
W and X . Hence the 2 × nf non-linear solutions required for second-order flow finite differences have
been replaced by one non-linear and nf linear solutions, all of dimension nW , and the dependence on finite
differences has been confined to the relatively cheap mesh update procedure.

This method was considered as early as 1982 by Bristow and Hawk for a subsonic panel method [17,
18], and again in 1989 for the transonic perturbations equations by Elbanna et al. [19]. In the early 90s it
was applied to the compressible Euler equation by two teams at Old Dominion University; that of Baysal
[20, 21, 22, 23] and that of Taylor and Hou [24]. Many of these articles are concerned not only with gradient
evaluation, but also the linearization of the solver as a tool for investigating small perturbation to the base
flow. On unstructured grids the idea was pursued by Newmann, Taylor et al. from 1995 onwards [25, 26, 27,
28].

5.4 The Discrete Adjoint Method

There are many ways to derive the discrete adjoint equations, the one given here is chosen for its similarity
to the derivation of the continuous adjoint presented in the following sections. Let the direct linearization (9)
be premultiplied by an arbitrary line vector ΛT of dimension nW , so that

ΛT ∂R

∂W

dW

dα
+ ΛT

(
∂R

∂X

dX

dα

)
= 0, ∀Λ ∈ RnW .
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Adding this expression to (10)

dJ (α)
dα

=
∂J

∂X

dX

dα
+

∂J

∂W

dW

dα
+ ΛT ∂R

∂W

dW

dα
+ ΛT

(
∂R

∂X

dX

dα

)
, ∀Λ ∈ RnW , (11)

and factorizing

dJ (α)
dα

=
(

∂J

∂W
+ ΛT ∂R

∂W

)
dW

dα
+

∂J

∂X

dX

dα
+ ΛT

(
∂R

∂X

dX

dα

)
, ∀Λ ∈ RnW ,

isolates the term dW/dα, which may be eliminated by choosing the arbitrary vector Λ to satisfy(
∂J

∂W
+ ΛT ∂R

∂W

)
= 0 or equivalently

(
∂R

∂W

)T

Λ = −
(

∂J

∂W

)T

, (12)

the adjoint equation, a linear system in unknowns Λ the adjoint solution, with respect to the objective func-
tion J . Given Λ the sensitivities may be written

dJ (α)
dα

=
∂J

∂X

dX

dα
+ ΛT

(
∂R

∂X

dX

dα

)
.

The critical point is that, because α does not appear in (12), that linear system must only be solved once for
each J . Hence the full matrix dJ /dα may be evaluated at a cost of nJ linear system solutions, substantially
independent of nf . Note that the issues described in Section 5.3 with regard to evaluation of the partial
derivatives above also apply here.

Perhaps the first application of this method was given by Shubin and Frank in 1991 for a quasi one-
dimensional nozzle flow using the compressible Euler equations [29, 30, 31], and was denoted there the
“implicit gradient approach” as contrast to the direct approach. Baysal et al. also recognized its potential,
and offered it as an alternative to the direct approach when nJ � nf [20, 21, 22, 23]. Later examples of the
discrete adjoint are given in more specific contexts elsewhere in this article.

5.5 Derivation of the Continuous Adjoint Equations

In this approach the adjoint of the continuous governing equations with respect to a given objective function is
derived, before being discretized. As already mentioned, the first appearance was due to Pironneau [32], with
Jameson providing the first treatment for compressible flows [33], which is similar to that given here. For a
more detailed introductory treatment see Abergel and Teman [34], Giles and Pierce [35], and Jameson [36].
The approach has since been reproduced by a variety of authors [37].

It is no longer easy to present the theory independently of the particular equations considered, therefore
we consider the 2d Euler equations in body-fitted coordinates in two dimensions. At the end of this section,
references for more general cases are presented.

It is assumed that the problem in physical space with a body-fitted structured grid, can be transformed
into computational coordinates (ξ, η), see Figure 13, in such a way that the transformation of Dxy to Dξη is
direct, that Dξη is a rectangular domain [ξmin, ξmax] × [ηmin, ηmax] and that ξmin corresponds to the profile
surface. Note that whereas the coordinate change operator depends on α, Dξη itself does not.
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Figure 13: Body-fitted to computational coordinate domain transformation

Let K be the determinant of the Jacobian of the coordinate transformation

K(ξ, η) = det

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
representing the change in size of a volume element under the transformation. Then the Euler equations in
the computational coordinates are

∂F (W )
∂ξ

+
∂G(W )

∂η
= 0, (13)

where

W = K

 ρ
ρu
ρv
ρE

 F (W ) = K


ρU

ρUu + p ∂ξ
∂x

ρUv + p ∂ξ
∂y

ρUH

 G(W ) = K


ρV

ρV u + p∂η
∂x

ρV v + p∂η
∂y

ρV H

 .

The slip-wall boundary condition is U = 0 on ξ = ξmin, and a farfield condition is applied to the ξmax

boundary. The objective function formulated in the new coordinate system is

J (α) =
∫

ξmin

J1(w)
∂y

∂η
dη +

∫
Dξη

J2(w)K(ξ, η) dξ dη, (14)

where the domain of integration is now independent of α.
The continuous adjoint equations can now be derived as follows: first write the first variation of the flow

equations with respect to the design parameter α. Referring to (13) there are two distinct types of variation:
the flux terms f(w) and g(w) vary with α, because the flow changes in the transformed coordinate space
when the shape changes, and independently all metric terms also depend on α:

f(w) → f(w) +
∂f

∂w

dw

dα
δα,

∂x

∂η
→ ∂x

∂η
+

∂2x

∂η∂α
δα.

Introduce a(w) = df(w)/dw and b(w) = dg(w)/dw the flux Jacobians, then the linearized equation
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corresponding to (13) is

∂

∂ξ

{(
a(w)

∂y

∂η
− b(w)

∂x

∂η

)
dw

dα

}
+

∂

∂η

{(
−a(w)

∂y

∂ξ
+ b(w)

∂x

∂ξ

)
dw

dα

}
+

∂

∂ξ

{
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

}
+

∂

∂η

{
−f(w)

∂2y

∂ξ∂α
+ g(w)

∂2x

∂ξ∂α

}
= 0,

(15)

and similarly for (14):

dJ (α)
dα

=
∫

ξmin

(
dJ1(w)

dw

dw

dα

∂y

∂η
+ J1(w)

∂2y

∂η∂α

)
dη

+
∫

Dξη

(
dJ2(w)

dw

dw

dα
K(ξ, η) + J2(w)

∂K(ξ, η)
∂dα

)
dξ dη.

(16)

Before continuing it is convenient to introduce notation for the flux Jacobian in the computational mesh
directions ξ and η,

a1(w, ξ, η) =
(

a(w)
∂y

∂η
− b(w)

∂x

∂η

)
, a2(w, ξ, η) =

(
−a(w)

∂y

∂ξ
+ b(w)

∂x

∂ξ

)
. (17)

The idea behind the following procedure is to add to (16) the inner product of the linearized governing
equations with an arbitrary four-component Lagrange multiplier λ, analogously to the discrete case in Sec-
tion 5.4. Then we search for a condition on λ for the gradient to be independent of the dw/dα terms. In
this case we assume that the flow and adjoint solutions, w and λ, are once continuously differentiable with
respect to the computational coordinates, i.e. w, λ ∈ C1(Dξη)4. Note that this is a very different restriction
to that necessary in the discrete case. Proceeding from (15) we have that∫

Dξη

λT

{
∂

∂ξ

(
a1(w, ξ, η)

dw

dα

)
+

∂

∂η

(
a2(w, ξ, η)

dw

dα

)}
dξ dη+∫

Dξη

λT

{
∂

∂ξ

(
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

)
+

∂

∂η

(
−f(w)

∂2y

∂ξ∂α
+ g(w)

∂2x

∂ξ∂α

)}
dξ dη = 0.

Using integration by parts, and the fact that the flow sensitivity and coordinate derivatives such as
∂2y/∂ξ∂α are taken to be zero at the farfield we have

−
∫

Dξη

∂λT

∂ξ
a1(w, ξ, η)

dw

dα
dξ dη −

∫
Dξη

∂λT

∂η
a2(w, ξ, η)

dw

dα
dξ dη−∫

Dξη

∂λT

∂ξ

(
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

)
− ∂λT

∂η

(
−f(w)

∂2y

∂ξ∂α
+ g(w)

∂2x

∂ξ∂α

)
dξ dη+∫

ξmin

λT a1(w, ξ, η)
dw

dα
dη +

∫
ξmin

λT

(
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

)
dη = 0.

Adding this expression to (16) and extracting terms multiplying dw/dα we obtain, from the volume and
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surface integrals respectively:
dJ2(w)

dw
K(ξ, η)− ∂λT

∂ξ
a1(w, ξ, η)− ∂λT

∂η
a2(w, ξ, η) = 0, on Dξ,η,

λT a1(w, ξ, η) +
dJ1(w)

dw

∂y

∂η
= 0, on ξmin,

(18)

the continuous adjoint equations and boundary conditions.
One very significant feature of this problem is that not all objective functions J1 lead to a well posed

adjoint boundary condition, because the flux Jacobian a1 is singular at a slip wall [33]. For the compressible
Euler equations described here functions of pressure are admissible, which is fortunate given that integral
forces on a profile are thereby allowed. On the other hand for the Navier-Stokes equations there is no clear
way of accounting for wall shear-stresses, and hence viscous drag [38]. Given a solution of (18) the gradients
of J may be written

dJ (α)
dα

=
∫

ξmin

J1(w)
∂2y

∂η∂α
dη +

∫
ξmin

λT

(
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

)
dη

−
∫

Dξη

∂λT

∂ξ

(
f(w)

∂2y

∂η∂α
− g(w)

∂2x

∂η∂α

)
dξ dη

−
∫

Dξη

∂λT

∂η

(
−f(w)

∂2y

∂ξ∂α
+ g(w)

∂2x

∂ξ∂α

)
dξ dη

+
∫

Dξη

J2(w)
∂K(ξ, η)

∂dα
dξ dη.

(19)

For the extension to the Navier-Stokes equations, also derived in curvilinear coordinates, see the seminary
articles of Jameson, Martinelli and Pierce of 1997 [39], while a more discursive treatment is given in [40],
which also includes considerations related to the use of the thus obtained gradients in shape optimization.

For finite volumes on unstructured meshes such coordinate transforms as described above are not used,
and a formulation in physical coordinates is necessary. One approach was first published by Anderson and
Venkatakrishnan in 1998 [38], and one year later by Hiernaux and Essers [41, 42]. Also of interest is an early
adjoint formulation of the thin shear-layer equations in physical coordinates [43].

All theory presented in this section has been under the assumption of continuously differentiable flow
and adjoint solutions, and therefore is only valid for flows without shocks. To alleviate this restriction the
integrals involved the derivation above may be split into parts downstream and upstream of a shock, before
applying the integration by parts formula and imposing the Rankine-Hugoniot condition on the boundary.
The extension of the continuous adjoint to discontinuous flows is a difficult topic, and the reader is referred
to works by Iollo et al. [44, 45], Cliff et al. [46], Giles et al. [47] and Gunburger [48]. However despite
the theory, it should be noted that difficulties with discontinuous solutions have only been seen to occur
numerically for special cases, and in practice they are not an issue.

Finally we note that the continuous direct formulation, embodied by (15), rarely occurs in the gradient
evaluation literature. Pelletier et al. [49, 50] applied it to incompressible flows, and the one of few com-
pressible references is of Sharp and Sirovitch for hypersonic profile optimization [51]. At the end, of course,
the continuous equations are discretized (using most classical CFD schemes) to define are computational
problem of finite dimension.
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5.6 Fully Linearized or Frozen Turbulence Modeling

Though frozen eddy-viscosity is increasingly the norm, there are indeed many authors who have linearized
turbulence models by hand or using AD. To our knowledge three classes of models have been linearized in
the literature:

1. The algebraic model of Baldwin-Lomax was differentiated by for example Le Moigne et al. [52] and
Kim et al. [53], both of whom used their method for profile optimization. Pham [54] adjointed the
algebraic Michel model for evaluating sensitivities in three dimensions in turbomachinery.

2. The one-equation model of Spalart-Allmaras was linearized by under others Giles et al. [55], and
the team of Anderson, Nielsen and Bonhaus at NASA Langley [56, 57, 58] who compared resulting
gradients with frozen eddy-viscosity gradients [59]. The complete linearized code was applied to the
3d optimization of an isolated wing. Further examples include Nemec and Zingg [60] and Brezillon
et al. [61] who both presented profile optimizations, in the latter case with multiple design points and
constraints.

3. The two-equation transport models k − ε, k − ω SST and Wilcox k − ω have been differentiated and
applied to sub- and transonic profile design, as well as high-lift profile and setting optimization by
Kim et al. [62, 63]. The former model has also been adjointed in the context of turbomachinery by
Renac et al. [64, 65].

There is however a notable lack of linearized transport equation turbulence models applied to configura-
tions significantly more complex than isolated wings with fully attached flow [59] or 2d high-lift profiles [63].
We suspect this is consequence, not of the difficulty of performing the linearization itself or accounting for
the coupling with the mean-flow, but of the problems associated with the solution of the resulting linear
system, which may be exceptionally poorly conditioned [66].

In any case in a very large number of articles the turbulence is fixed. In both the continuous and discrete
cases this is achieved simply by adjointing only the mean-flow equations and treating turbulent quantities
appearing therein as constants. For one-equation models these are just the eddy-viscosity, for two-equation
models the turbulent kinetic energy k also appears in the internal energy and hence in the pressure. Hence
in addition simplifying the solution of the system, the number of equations to be solved is reduced. Notable
examples of this approach are due to Jameson et al. [67], Soemarwoto [68] and Valentin [69].

There are additionally several authors that are principally interested in AD, and the linearization of tur-
bulence models as a secondary issue: Hou et al. [70] for Baldwin-Lomax, and Mohammadi [71] for a k − ε
model. As a related point of interest, Bischof et al. [72] used an AD tool in forwards mode to determine
the sensitivity of flow over a backward-facing step (particularly the re-attachment point) to empirical param-
eters of several turbulence models, the idea being that a large sensitivity to an experimentally determined
parameter is a weakness of the model.

5.7 Use of sensitivities for variance analysis

In the context of industrial applications, an adequate local optimum of a function is not the only result which
is sought for. In particular, the sensitivity of the objective function with respect to small variations in the
design parameters is also of gret interest.
For a constrained optimization problem, most often, the first derivative dJ

dα is not equal to zero and its value
is the requested information.
Conversely, if dJ

dα = 0, then either a local sampling of function J is needed or a computation of second
derivatives - not described here, see [73].
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6 Applications

6.1 Discrete adjoint method at ONERA

ONERA publications relative to discrete adjoint method are :
- Discrete adjoint in elsA (part I): method/theory [74] and Improving accuracy robustness of discrete direct
differentiation method and discrete adjoint method for aerodynamic shape optimization [65]. These confer-
ence articles present the baseline of the discrete direct differentiation and adjoint method for aerodynamics
at ONERA ;
- Sensitivity analysis of a strongly coupled aero-structural system using discrete direct and adjoint methods
[75] presents the extension of the gradient computation methods to aeroelasticity ;
- Aerodynamic Sensitivity Analysis of the RANS Equations via the Recursive Projection Method [76]. This
paper focuses on the efficient resolution of linear systems of the gradient methods.

6.2 Turbomachinery, helicopter and civil aircraft shape optimizations at ONERA

Many turbomachinery and civil aircraft shape optimizations have been carried out at the applied aerodynam-
ics departement of ONERA. Even if various local and global optimization algorithms have been used, most
often, local optimization was performed using conjugate gradient for unconstrained optimization and feasi-
ble direction method for constrained optimization. Discrete adjoint method (see previous section) provided
the gradients needed by the algorithms for most of the recent studies.

Two turbomachinery blade optimization - out of three presented in an ASME paper by Burguburu et al.
[77] - are summarised in the next two sessions. Other recent studies include :
- Discrete adjoint in elsA (part II): application to aerodynamic design optimization [78] This paper presents
the 2006 status of aerodynamic shape optimization for civil aircrafts at ONERA. It presents three appli-
cations among which the enhancement of aerodynamic performance of a supersonic commercial transport
wing (multipoint optimization) and the shape optimization of the engine pylon of a large transport aircraft;
- Single and Multi-point Aerodynamic optimizations of a supersonic transport aircraft wing using optimiza-
tion strategies involving adjoint method and genetic algorithm G. Carrier [79];
- Efficient design optimization by physics based direct manipulation free-form deformation Yamazaki et al.
[80];
- Aerodynamic shape optimization of Hovering Rotors using a discrete adjoint of RANS equations A. Du-
mont et al. [81] (an improved version is also to be soon published in the AHS Journal) This paper gives
the status of the discrete adjoint for hovering rotors at ONERA. Basic shape optimization of Rotor 7A and
advanced shape optimization of rotor ERATO are also presented.

At last, some conference articles dealing with multi-disciplinary optimization are listed below :
- Multi-disciplinary Optimization of a Supersonic Transport Aircraft Wing Planform G. Carrier [82];
- Aerodynamic and structural optimization of powerplant integration under the wing of a transonic transport
aircraft S. Mouton et al. [83];
- Towards aerodynamic design by optimisation of a transonic aircraft in a multi-disciplinary context G.
Carrier et al. [84].
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6.3 Optimization of a turbine stage. Quasi 3D flow. [77]

6.3.1 Mesh, parametrisation, mesh deformation

The optimization presented here concerns the shape modification of the stator of a turbine stage. The objec-
tive is to improve the efficiency by only modifying the stator, but taking into account the rotor bladings. So
this optimization is carried out by computing the whole stage. The mesh, represented on Fig. 11, is made of 4
blocks per row, with a O3H topology for each of them. One can notice the large number of nodes around the
stator blade. A particular attention has been paid to keep the mesh as homogeneous as possible, especially
at the interface of the wheels. As illustrated on Fig. 12, the inlet absolute flow angle is close to the stator
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Figure 14: O3H-O3H Mesh. Test case 1.

exit absolute flow angle. The deviation is rather small (<20o) compared to the standard stator turbine blade
where the deviation can be greater than 70o. The relative Mach number flowfield plotted on Fig. 12 shows
a subsonic flow in the major part of the stage. Only a supersonic zone at the suction side of the stator can
be observed downstream of the leading edge. In the rotor, the relative Mach number remains lower than 0.7.
The camber line and the suction side of the blade are modified, one after the other, by the shape optimization
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Figure 15: Relative Mach-number iso-lines. Test case 1.
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process. The deformation of the suction side profile is based on degree seven Bézier function. This function
of the reduced abscissa defines the displacement of the profile points along the local normal vector. For the
application, two coefficients of the degree six Bézier function are frozen, so that there are only five design
variables for the deformation of the suction side profile.
The modification of the camber (as a function of the abscissa along the central line of the blade) is somehow
different. Once again, changes w.r.t. to the initial shape are defined, but the coefficients of the Bézier curve
defining the new camber are not anymore the shape parameters. The change in camber is defined by

δcamb(u) =
k=5∑
k=0

ΨkB
5
k(u)

The 6 coefficients Ψk correspond to 6 reduced abscissa along the central line of the blade, uk in [0, 1] ; they
are computed iteratively from Ψ0= 0 and five design parameters αi (i ∈ [1, 5]) using recursive formula

Ψk = Ψk−1 + (uk − uk−1)tan(αk)

This means that αk define Ψk steering the difference between two successive Ψk.

This displacement of the wall points is exactly transmitted to all points of the corresponding mesh line,
orthogonal to the wall. Its is damped in the three H domains.

6.3.2 Objective and constraints

The objective function and constraints are evaluated by averaging the aerodynamic flowfield with a momen-
tum average. The averaging planes are located upstream (2) of the stator and downstream (1) of the rotor.
As the goal is to improve the performance of the stage, the objective function is taken as the opposite of the
"gas power" of the stage:

J (α) = −mCp(Ti2 − Ti1)

Of course the mass flow must be maintained to its initial value. The (only) constraint of the problem is thus

G1(α) = m(α)−m(α0)

Also notice that the improvement of the gas power is linked to the improvement of the efficiency because the
total- to-total pressure ratio remains constant during the optimization. This is a result of the constraint on the
mass flow and the same downstream static pressure for all the calculations.
Eventually, different constraints are implicitly applied through the definition of the parametrization, for tech-
nological reasons and in order to improve the robustness of the optimizer. The stator axial chord remains
constant when applying a deformation and the design variables are restricted to ’reasonable’ values (i.e. lead-
ing to feasible bladings). For example, the camber line is not allowed to be curved by more than 4o and the
blade thickness can only vary among ±50% of the initial thickness.

6.3.3 Optimization using feasible direction method

A two step optimization is carried out. First, only the camber line of the blade is optimized (with zero defor-
mation of the suction side of the blade). Then, the suction side profile of the blade is also optimised while
the camber line is equal to the one defined by the first step of the optimization. Respectively, six and seven

Local Search Methods for Design in Aeronautics 

RTO-EN-AVT-167 4 - 35 

 

 



descent iterations are performed for the two steps of the optimization.
As the adjoint method was not available at ONERA in 2003, finite difference gradients were computed. After
the descent direction was found by feasible direction method (see 4.3.3) third order polynomial approxima-
tion was used (see 4.1.4) to find a step value. This led to (5 + 3) × (6 + 7) = 104 analysis computations.
Convergence history is presented by figure 16.

Itérations

η
is
e
n
tr
o
p
ic

∆
J

0 1 2 3 4 5 6 7 8 9 10 11 12 13
94.2

94.4

94.6

94.8

95

95.2

95.4

0.15

0.1

0.05

0
suction side
optimization

camber line
optimization

η
is

∆F
obj

∆F
obj

η
is

Figure 16: Convergence history. Test case 1.

6.3.4 Results

The variation of the turbine stage outputs is summarized in next array

∆J ∆ηisen ∆m ∆Rpi ∆RTi

∆ ∆ % % %
-0.12 +0.82 -0.08 0.0 0.87

As indicated in the table, the variations of the overall performance show that there is no need to apply a
constraint on the total-to-total pressure ratio.
The normalized density gradient contours plotted on fig. 17 allow a more precise analysis. One can not only
observe a large reduction of the gradients downstream the leading edge, but also a redution of the gradient
at the trailing edge, on the pressure side. Moreover, the boundary layer on the suction side is thinner on the
optimized blade.

6.4 Single rotor blade. 3D flow [77]

A 3D blade of a transonic compressor is optimized. The CFD calculation is carried out on the isolated rotor
with account of the tip clearance. (RANS) equations with wall-law boudary conditions are considered.
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Figure 17: || ~gradρ||
ρ

Cas test 1.

6.4.1 Mesh, parametrization, mesh deformation

The grid is made up of 3 blocks (H-O-H topology) in the main duct (Fig. 19) and of 2 blocks (O-H topol-
ogy) in the tip clearance zone, for a total of 196573 nodes. On the periodic boundaries, the nodes are not
coincident, but lie on the same surface for an accurate interpolation. An adiabatic wall boundary condition
is applied in the rotating frame at the hub and on the blade. A fixed wall boundary condition is applied at the
casing. The grid is suited for computations using wall functions (in order to reduce the CPU time). Figure
18 presents a view of the mesh.
The operating point is in a transonic state: the relative Mach number at the tip of the blade is about 1.2 but
the compressor is not choked in these conditions.

For the shape parametrization, the same principle as described with the quasi 3D approach is extended

Figure 18: Configuration. Mesh. Test case 2.

to 3D. The blade surface is extracted from the grid, and a deformation zone is defined on this surface by
its indices. A current point in this zone is defined by its reduced coordinate (u, v) ∈ [0, 1] × [0, 1] (chord

Local Search Methods for Design in Aeronautics 

RTO-EN-AVT-167 4 - 37 

 

 



and in the span direction respectively). In the present application, the zone where geometrical modifications
are applied covers the suction side, from the leading edge to the trailing edge and from hub to casing. The
displacement is defined by a Bézier surface. The Bézier surface, defining the displacement along the local
normal, is linked to the parameters Pkl by the relation:

δ(u, v) =
k=n∑
k=0

l=m∑
l=0

PklB
n
k (u)Bm

l (v)

(where Bn
k (u), just as before, is the kth Bernstein polynom of degree n). More precisely the degree of δ(u, v)

is n = 6 for reduced coordinate u and m = 3 for reduced coordinate v. Next plot (figure 19) defines the fixed
and free coefficients. The nine free coefficients (P32, P33, P34, P42, P43, P44, P52, P53, P54) are the design
parameters. The deformation of the solid wall is propagated and damped inside the domains, almost like for
the quasi 3D case. Neverthless, specific care is taken near the tip clearange (it is important that it keeps a
strictly constant heigh).
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Figure 19: Active/inactive control points of the Bézier surface. Test case 2.

6.4.2 Objective, contraints functions

The objective is the isentropic efficiency of the blade

J (α) = 100× (1− ηisen)

No constraint is included.

6.4.3 Optimization

For this 3D case, only 3 iterations of optimization are performed. This optimization requires 41 calls to the
CFD solver for a total calculation time of 41 000 seconds ( 11 hours) on NEC SX5. As the adjoint method
was not available at ONERA in 2003, finite difference gradients were provided to the feasible direction
method algorithm. Final values of the main parameters are presented in next array.
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∆J ∆ηisen ∆m ∆Rpi ∆RTi

∆ ∆ % % %
-1.07 +1.07 +1.2 -0.1 -0.2

One can notice a low variation of the mass flow (but larger than in the quasi 3D application). The total-to-
total pressure and temperature ratio remains almost constant. The deformations of the blade are plotted on
Fig. 20 with an amplification factor of 10. As we can see on the optimized blade, the new shape at 80%
and at 50% of the reduced span follows the same trend as observed in the quasi 3D test case: the thickness
is increased in the rear part of the blade and a curvature change is applied at 30% of the chord. At 80% of
the span, the blade thickness is reduced downstream of the leading edge. A mechanical constraint should be
applied in this part of the blade to avoid any vibration problems. At 20% of the span, the blade thickness
is increased from the leading edge to the trailing edge with a maximum located at 60% of the chord. The
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Figure 20: Final deformation (amplified). Test case 2.

radial distribution of aerodynamic characteristics at one axial chord downstream of the blade are plotted on
Fig. 21. The most significant result is indicated by the radial evolution of the efficiency difference between
the optimized and the reference blade: the efficiency improvement is larger than 5 points at 95% of the span,
close to the tip clearance. Most of the efficiency improvement is located between 50% of the blade span and
casing although the blade has changed in the lower part of the blade. The evolution of the other quantities
does not present large modification as compared to the reference: the increment of mass flow from 70% of
the span to casing is balanced by a 2% reduction in the lower part. The total-to-total pressure ratio evolution
is not modified after the optimization except in the tip clearance region. Some differences occur on the flow
angle (more than 1o from 80% of the span to casing) but they stay low in the major part of the duct; only the
tip clearance presents some variations larger than 2o.
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Figure 21: Spanwise change in aerodynamic outputs. Test case 2.

7 Conclusion

Local optimization for aeronautics has been a very active topic since the 70’s. As it appears in other lectures
of this RTO course, local and global optimization methods are nowdays often combined in an efficient search
of global optimum. Nevertheless, a good knowledge of the basics of local optimization is still essential.
Besides, some questions related to local optimization remain open today. For example, in aerodynamic
shape design, the solution of the adjoint equation for complex flow equations and complex geometries, is not
yet a routine process.
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